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The degenerative lumbar disc: not a disease, but still an important
consideration for OMPT practice: a review of the history and science of
discogenic instability
Brian T. Swanson a and Douglas Creightonb

aDepartment of Rehabilitation Sciences, University of Hartford, West Hartford, CT, USA; bSchool of Health Sciences, Oakland University,
Rochester, MI, USA

ABSTRACT
Background: A recent AAOMPT position paper was published that opposed the use of the
term ‘degenerative disc disease’ (DDD), in large part because it appears to be a common age-
related finding. While common, there are significant physiologic and biomechanical changes
that occur as a result of discogenic degeneration, which are relevant to consider during the
practice of manual therapy.
Methods: A narrative review provides an overview of these considerations, including a histor-
ical perspective of discogenic instability, the role of the disc as a pain generator, the basic
science of a combined biomechanical and physiologic cycle of degeneration and subsequent
discogenic instability, the influence of rotation on the degenerative segment, the implications
of these factors for manual therapy practice, and a perspective on an evidence-based treat-
ment approach to patients with concurrent low back pain and discogenic degeneration.
Conclusions: As we consider the role of imaging findings such as DDD, we pose the following
question: Do ourmanual interventions reflect the scientifically provenbiomechanical aspects of DDD,
or have we chosen to ignore the helpful science as we discard the harmful diagnostic label?

KEYWORDS
Degenerative disc; low back
pain; review; biomechanics;
physiology; manipulation;
clinical reasoning; imaging

The American Academy of Orthopedic Manual Physical
Therapists (AAOMPT) recently released a position
statement and white paper, titled ‘AAOMPT Opposes
The Use Of Degenerative Disc Disease’[1] which states
‘. . . AAOMPT supports and encourages early physical
therapy interventions with known effectiveness instead
of high-risk procedures and medication, and strongly
recommends that clinicians avoid using the diagnosis
of degenerative disc disease’ [1]. This objection is
based on several premises, namely that degenerative
disc disease (DDD) is a common age-related observa-
tion and therefore not a disease, as well as over-
utilization of diagnostic imaging to direct treatment.
The AAOMPT statement asserts ‘Both patients and pro-
viders use imaging to guide decisions related to interven-
tion. However, emerging evidence highlights the
potential negative impact that diagnostic labels used to
describe imaging findings can have on patient out-
comes.’[1–3] We make no arguments regarding the
need for thoughtful and judicious use of diagnostic
labels; rather we suggest that imaging findings can,
and should, inform and guide treatment decisions as
one aspect of a larger clinical reasoning process. Disc
degeneration is a common finding in adults with and
without LBP less than 50 years of age [4], and a com-
mentary by Lewis et al. cautions therapists not to base
treatment on ‘normal’ age-related findings [5]. In the

selection of treatment technique, it has been sug-
gested that ‘the choice of technique does not seem to
matter as much as identifying an individual likely to
respond’ [6]. However, more advanced disc degenera-
tion is frequently observed at spinal levels where con-
cordant symptoms are reproduced [7,8]. The
International Society for the Study of the Lumbar
Spine (ISSLS) has called DDD the most common
cause of low back pain [9]. It has been postulated
that the hallmarks of the degenerative process includ-
ing tears of the annulus fibrosis, loss of disc height,
alterations in loading and stability of the motion seg-
ment, and accompanying biochemical changes result-
ing in pain [9]. As we consider the role of imaging
findings such as DDD, we pose the following question:
Do our manual interventions reflect the scientifically
proven biomechanical aspects of DDD, or have we
chosen to ignore the helpful science as we discard
the harmful diagnostic label? To assist in our under-
standing of matter, we begin with a historical perspec-
tive on disc degeneration, segmental instability and
imaging.

1. Historical perspective

According toWong and Transfeldt [10], instability second-
ary to disc degeneration is perhaps the most common
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cause of low back pain. This was not a new observation, as
Goldthwaith [11] (1911), Johnson [12] (1934), and Smith
[13] (1934) wrote that lumbar vertebral instability was an
important cause of severe low back pain. Knutsson [14]
(1944), confirmed the presence of lumbar segmental
instability using simple side bending, flexion and exten-
sion stress radiographs. He noted, long before the devel-
opment of MRI, that segmental instability could be seen in
lumbar segments prior to the development of advanced
osteoarthritic changes and advanced disc space narrow-
ing. In effect, Knutsson was one of the first researchers to
describe the instability that results from early grade disc
degeneration. Friberg [15] (1948), Friberg and Hirsch [16]
(1949) and Harris and Macnab [17] (1954) all found seg-
mental instability secondary to disc degeneration as con-
firmed by numerous spinal specimens removed at
necropsy. These individuals consistently found instability
to be associated with annular clefting and tears, including
transverse or radial tears of the annulus fibrosus. In terms
of excessive anterior and posterior vertebral translation
secondary to disc degeneration, Schmorl and Junghanns
[18] (1932) described discogenic instability using the term
‘anterior pseudo-spondylolisthesis’, which has been
replaced by the term ‘anterolisthesis’. Later, Schmorl and
Junghanns [19] (1953) described ‘posterior pseudo-
spondylolisthesis’, now commonly called ‘retrolisthesis’.

Ian Macnab [20,21] (1971, 1977) was one of the early
researchers who wrote and spoke about disc degen-
eration from a mechanical point of view. He eloquently
defined disc degeneration as the ‘breakdown in the
mechanical integrity of the disc’. Macnab wrote that
secondary to disc degeneration, spinal segmental
motion becomes irregular and excessive, with
a resultant ‘loss of structural integrity’ of the spinal
motion segment. Accordingly, he wrote that any spinal
segment with discogenic degeneration ‘becomes vul-
nerable to trauma’ and other forms of loading.
Kirkaldy-Willis [22,23] (1982, 1978) wrote what is the
generally accepted three-phase pathophysiological
model of spinal degeneration. Commonly described
as a ‘cascade’ of degenerative changes, the model
consists of three sequential stages: 1) dysfunction, 2)
instability and 3) stabilization. Were Macnab, Kirkaldy-
Willis, and the other early researchers correct in their
assertion that disc degeneration, including early grade
disc degeneration, leads to segmental instability and
the potential for both chronic and recurrent backache?

These early spine specialists and researchers laid the
groundwork for other spinal researchers. Pfirrmann
[24] (2001) helped to establish grades of disc degen-
eration using magnetic resonance imaging. Using the
Pfirrmann scale and advanced imaging technology,
more recent research has supported the work of early
spinal scientists. Understanding the grades of disc
degeneration, and their association with segmental
instability, is important for the manual therapists of
today who practice spinal manipulative therapy.

2. The disc as a pain generator

The disc itself is a potential source of pain, a concept
Crock highlighted to the medical community during his
1985 address to the ISSLS [25]. Kuslich et al. [26] per-
formed decompression surgery for herniated discs or
spinal stenosis under local anesthesia in 193 consecutive
patients. During surgery, the local segmental tissues were
stimulated and patient response was recorded. They
found muscle, fascia and vertebral bone to be largely
insensitive (no pain reproduction), and the facet joint
capsule was rarely provocative. The annulus, however,
was provocative of lower back pain in over two-thirds
of the patients. This finding can be explained through an
understanding of the physiology of discogenic degenera-
tion. Malinsky [27] and Yoshizawa [28] demonstrated the
presence of encapsulated and unencapsulated pain
receptors in the outer annulus, and Shinohara (1970)
first identified nerve fibers in the inner portions of degen-
erative discs [29]. Pathological disc degeneration results
in additional neural ingrowth into the outer two-thirds of
the annulus, making the disc more pain sensitive [29].
This nociceptive neoinnervation is often found accompa-
nied by annular tears [26–28]. In the healthy disc,
a compact, stable network of collagen, as well as an
environment rich in the proteoglycan aggrecan (which
inhibits nerve growth in vitro) [30] prevent the growth of
nerve fibers into the disc. Tears of the annulus disrupt the
collagen complex, resulting in an inflammatory response
and subsequently decreased proteoglycan content,
including aggrecan, in the disc. Nerve growth factor
(NGF), which promotes nerve ingrowth into the disc
[31,32], is one of the inflammatory mediators present in
this response, and upregulation of NGF following disc
injury has been observed in both animal and human
models [33]. The evidence clearly suggests that nerve
growth into the disc is triggered by tears of the annulus,
is promoted by increased levels of inflammatory media-
tors, and continues to progress due to the loss of proteo-
glycans (aggrecan) [34]. In the degenerated disc, uneven
load distributions over the vertebral endplate lead to
abnormal stress concentrations on the peripheral annu-
lus [35–37]. As compressive load on the annulus
increases, the annular fibers become progressively disor-
ganized, accompanied by progressive cellular apoptosis
and diminished aggrecan expression [38]. Continued
abnormal stresses then prompt further inflammatory
response [39], resulting in the stimulation of NGF
mediated neoinnervation into the degenerated disc
[34]. Repeated episodes of injury then lead to chronic
inflammation and further degenerative changes [40].

3. The Disc as a source of instability

‘Discogenic instability’ is frequently observed in the
absence of other specific disorders [41,42]. As we explore
this concept, it is helpful to differentiate between range
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of motion (ROM) and the neutral zone (NZ). ROM is
limited by the passive osseoligamentous structures,
while the NZ is inherently unstable; it is an area within
which the spine has minimal internal resistance to move-
ment, and therefore requires neuromuscular control
[43,44]. The NZ, defined by the point in the movement
at which resistance is first detected, has been shown to
be a sensitive indicator of minor injury [45], and changes
in NZ are believed to be closely related to clinical instabil-
ity [43]. One method considered useful in expressing
clinical instability is the NZ/ROM ratio, expressing the
NZ (indicating laxity) as a percentage of the full ROM
[46]. As intervertebral discs provide the majority of the
intrinsic resistance to small spinal movements [47,48],
and segmental instability results from discogenic degen-
erative changes [41,49,50], enlargement of the NZ ismore
indicative of instability than changes in ROM [44,51,52].

Multiple authors have investigated the role of disco-
genic degeneration on the development of neutral zone
instability of themotion segment. Zhao et al. investigated
the effects of disc dehydration resulting in 1 mm height
loss (approximately 10% dehydration), followed by dis-
ruption of the endplate, changes noted to be typical of
natural disc degeneration [53]. Following dehydration,
NZ motion increased by 42–71%, respectively, in flexion
and lateral bending, and this increased to 89–298% fol-
lowing compressive load induced endplate failure.
Dehydration resulted in an increase of the ‘instability
index’ (NZ/ROM) by approximately 13% for bothmotions,
while endplate disruption resulted in an increase of 43%
to 61%. Translatory motion increased by 27–36% follow-
ing dehydration, which increased to 58–86% following
endplate disruption [53]. Sengupta and Fan also identi-
fied increased NZ in spines with confirmed DDD, with
concordant alterations in the axis of motion for rotational
movements [54]. Axelsson and Karlsson demonstrated
increased mobility, both vertical (compression/distrac-
tion) and translational, that persisted until the disc
demonstrated 50% height loss [55]. Using kinetic MRI,
Kong et al. observed progressively increasing translatory
mobility across all Pfirrmann grades of degeneration,
with a significantly higher prevalence in patients with
Grade IV degenerative discs [56,57]. This finding has
been further reproduced in post-operative discs; minimal
removal of nuclear material has resulted in significant
increases in mobility of the functional unit in all planes
when compared with intact motion segments [55,58,59].
The mechanical effect has been further demonstrated by
Rohlmann et al., who observed that in the presence of
discogenic degeneration, during small moments the
spinal load is transferred to the annular ground sub-
stance, while the facet joints and most ligaments are
essentially unloaded [36].

The current research demonstrates the unquestion-
able role of discogenic degeneration in the develop-
ment of frank and subtle instability of the lumbar
motion segment. Discogenic degeneration leads to

a loss of height of the motion segment, with resultant
buckling of the longitudinal ligaments; the ligaments
require greater pre-tensioning stresses to serve in
a stabilizing function [36], with ligamentous tension
occurring much later than in the healthy segment [36].
Fujiwara et al. [60] examined 110motion segments from
44 spines (average age 69 years), performing biomecha-
nical and imaging studies on cadaveric spinal motion
segments. They found disc degeneration to be asso-
ciated with changes in spinal motion; lateral bending
and rotation both increased with Grade I, II and III disc
degeneration, and did not decrease until Grade V disc
degeneration was achieved. Tanaka et al. [61] examined
114 lumbar motion segments from T12 – L5 taken from
47 fresh cadaver spines (average age 68 years), and
demonstrated greater flexion, extension, and rotation
ROM with disc degeneration up to grade III–IV, which
they observed to be concurrent with tears of the annu-
lus fibrosus. Muriuki et al. [62] observed that females
demonstrated about one degree larger range of motion
in all rotational modes following discogenic degenera-
tion. Kettler et al. assessed an in-vitro database, and
demonstrated that in the presence of DDD, stability to
bending increased, while axial rotational stability
decreased with a concurrent increase in neutral zone
motion [63], findings that have been further reported by
van Rijsbergen et al. [64]. Lao et al., in an in vivo MRI
study, demonstrated the progression from normal disc,
then progressive instability, with ankylosis ultimately
occurring at Pfirrmann grade V [65], further confirming
the early work of Kirkaldy-Willis [22,23].

4. Axial rotation as a source of annular stress

Previous work has demonstrated that forced rotation
beyond 3° may produce structural damage, i.e. circumfer-
ential annular tears [66]. While an absolute tolerance of
12° torsional stress has been demonstrated before abso-
lute failure occurs, damage is observed to occur at 3° [35].
In motion segments with discogenic degeneration,
Mimura et al. [46] observed axial rotation per segment
of up to 4.0°, and Rohlmann et al. [36] predicted up to
6.1°. Acaroglu et al. demonstrated that, during axial rota-
tion, the largest strain occurs in the posterolateral aspect
of the disc, in the direction of rotation, while flexion and
contralateral lateral bending also increased strain and
may place the disc at risk of injury [67]. Annular strain is
an important consideration, as Gordon et al. demon-
strated that the annulus fibrosis is the primary location
of pathologic change in a reliable model of disc rupture
using physiologically reasonable stress, and incorporat-
ing slight flexion (7°) and rotation of <3° [68].

The zygapophyseal joints provide a protective effect
to the disc, orientated to limit total axial rotation to <3°
under normal conditions [35]. Stress to the annulus
fibrosus is increased if axial rotation occurs in combina-
tion with flexion [35,66]. Flexion results in increased
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annular strain via a pre-load of the posterior annulus
fibrosus; as a result less axial rotation is required to
maximally strain collagen fibers [35,66]. In flexion, the
facet joints afford less resistance to axial rotation, result-
ing in maximal annular stress, while the posterior ele-
ments provide less protective resistance [35,69]. Jelec
et al. stated eloquently ‘Axial rotation of the lower lumbar
spine is undoubtedly associated with higher strain in disc
annulus, and enhanced range of secondary rotational
movements may be even more significant for the progres-
sion of annular degeneration’ [70].

5. Considerations for discogenic stresses
during manual therapy

In a porcine model with a healthy motion segment,
a 500 N force applied at the L4 transverse process
resulted in 3.2 ± 1.7° rotation, while an identical force
applied at the facet joint resulted in only 1.9° of rotation
[71]. It was noted that significantly greater loads were
experienced by intact specimens in response to greater
force magnitudes during manipulation, and it is also
apparent that longer levers result in significant increases
in rotation at the motion segment. To put this in context,
normal forces delivered during lumbar manipulation
have been reported, ranging from 400 to 1400 N [72].

Wang et al. (2008) demonstrated progressive pos-
terolateral loads with greater degrees of flexion during
rotatory manipulations of the lumbar spine [73]. Wang
et al. [74] (2018) investigated intradiscal pressures (IDP)
comparing manipulations to mobilizations. They
demonstrated that ‘maximal IDP on the rotating side
was greater than the contralateral side during simu-
lated spinal mobilization and manipulation’, while the
rate of IDP development, with an increase of 33–58%,
was significantly faster during manipulation. They con-
clude that ‘thrust manipulation may have more instant
impact to discs than mobilization’ [74]. Discogenic
degeneration has been shown to significantly increase
nucleus pulposus stiffness, resulting in unequal stress
distributions within the disc, and higher force concen-
trations in the annulus [37,75]. Li et al. have demon-
strated that the annular forces, annular stress and IDP
are all higher in mildly and moderately degenerated
discs than healthy segments during rotational manip-
ulation [76]. Fujita et al. reported that degenerated
discs demonstrated yield and ultimate stress up to
30% lower when compared with normal discs, with
the observed alterations in the mechanical properties
beginning in the early stages of disc degeneration [77].

Degeneration of the disc also results in alteration of
the axis of rotation; with mild to moderate degenera-
tive changes, the axis of rotation migrates posteriorly,
closer to the apophyseal joints [53]. Zhou et al. demon-
strated that, in the presence of severe degeneration,
the superior vertebrae can pivot about the inferior
apophyseal joints [53]. During manipulative forces

applied into axial rotation, this is demonstrated via
increased forces in the contralateral facet joints,
which become more prevalent with higher grades of
disc degeneration. Mechanically, this shift of the axis of
rotation to the contralateral facet results in increased
stress on the posterolateral annulus in the manipula-
tive direction of rotation.

6. Implications for practice

If forced rotation stresses the annulus, flexion minimizes
the ability of the facet to limit rotation, discogenic degen-
eration allows greater overall rotation to occur, and the
annulus has a lower ability to tolerate rotational stresses
with DDD, why do we apply rotational manipulations in
this population? Taken as a whole, this literature suggests
caution in the application of rotatory lumbarmanipulation
in the presence of early grade disc degeneration. Many
alternatives exist for our consideration. Oscillatory spinal
manual therapy interventions [78], applied prior to tissue
resistance, will likely benefit painful motion segments with
early grade disc degeneration. Manual interventions, par-
ticularly oscillatory techniques [79,80], are often applied
for the purposes of sensory modulation [6,81] and likely
would not further compromise the structural integrity of
a motion segment with a degenerated disc. Distraction
and stabilization have been suggested as creating suitable
conditions for disc rehydration and, therefore, potential
regeneration [82,83]. Accordingly, traction-based manual
interventions [84,85] applied to degenerated hypermo-
bile-unstable segments, and delivered with the intent of
decompressing painful segments in patients who demon-
strate discogenic hypermobility-instability both with and
without radiculitis [10] is another example of spinal man-
ual intervention that respects the existing scientific work
on disc degeneration [41,49,53,54,60,63,65]. Studies have
demonstrated that manipulations utilizing a distractive
force may be effective in individuals with degenerative
spinal conditions [86], generate lower forces within the
disc, including application in both flexion and extension,
and may be safer alternatives to rotatory manipulation
[87–92]. In cases of symptomatic discogenic hypermobi-
lity, perhaps we should mobilize with the lumbar seg-
ments in mid-position with a decompressive traction-like
load [85].

While decreased diffusion of water and loss of PG
content are hallmarks of DDD, it has been suggested
that fluid exchange is integral tomaintaining disc nutrition
[93], and tissue swelling is an important consideration for
strategies aimed at restoring normal mechanical behavior
of the disc [94]. Mobilizations such as P-A glides have been
reported to result in pain relief and improved motion in
individuals with low back pain [78,95,96] while also
improving disc hydration [97–99]. However, in the pre-
sence of discogenic degeneration, Gr III/IV
P-A mobilizations may generate increased neutral zone
shear [100–102]. Careful testing and clinical reasoning are
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required in application of this treatment. Prone extension
exercises also improve hydration [97,98]; however, the
expected nuclear movements are based on a healthy
lumbar disc model, where the nucleus is displaced ante-
riorly by extension and posteriorly by flexion [103,104].
While discs with grade I degeneration appear to behave as
expected [105], changes in intradiscal pressure and posi-
tion are not predictable in discs with significant degenera-
tion [103,105–107] and degenerative discs have been
reported to bulge posteriorly during extension motions
[104,105,108]. As disc degeneration progresses, focal areas
of compressive stress and shearing within the annulus rise
by up to 75% in flexion and 108% during extension [37].
The application of gentle tension forces to the annulus,
such as those generated during mid-range traction inter-
ventions, have been shown to improve disc hydration
[109–113], induce extracellular matrix gene expression
[114] and improve disc nutrition via fluid movement
[115], all of which may inhibit further degenerative
changes in the annulus. As disc dehydration has been
shown to increase instability [53], and improved hydration
has been reported to reduce spinal flexibility [111] and
maintain normal mechanical stiffness [94], mid-range
mobilization and traction interventions would appear to
be beneficial in the population with discogenic instability
without undesirable mechanical stresses.

The resulting expansion of the neutral zone in indi-
viduals with discogenic degeneration requires a greater
contribution from the local musculature [43]. The multi-
fidus has been shown to create up to two-thirds of the
stability of the segment in the neutral zone, and is
perhaps the muscle most well suited for direct stabiliza-
tion of the segment in mid-range [116–121]. We have
known since the 1990’s that first time backache causes
immediate changes in the multifidus, and that sponta-
neous recovery of the multifidus does not happen
unless we strengthen it [122]. The degenerative changes
in the multifidus appear to be an increase in adipose/
connective tissue; Hodges et al. demonstrated
a meaningful association of multifidus adiposity follow-
ing disc injury in a case-control model [123]. Despite
reports that agingmay account for some of the variance
observed in fatty infiltration of the multifidus, greater
levels of fatty infiltration are observed in individuals with
lumbar degenerative disease compared to healthy indi-
viduals, regardless of age [124]. Rapid onset of atrophy
and fatty infiltration has been observed in experimen-
tally induced discogenic degeneration, and a relation-
ship between disc degeneration and fatty infiltration of
the multifidus has been observed in the presence of
reduced IVD height in both an animal model [125,126]
and in vivo [127]. This loss of function is of obvious
clinical importance; during kinetic MRI, excessive angu-
lar motion was significantly associated with fatty infiltra-
tion of the paraspinal musculature [57].

In motion segments with discogenic degeneration,
normal multifidus tensile and loading forces may not

occur as a result of reductions in muscular activity
[128–130] and/or modified movement patterns [131].
The resulting alterations of mechanical input to the
muscle (mechanotransduction), and subsequent
changes in genetic and molecular signaling [132,133],
are at least partly responsible for the observed func-
tional and structural changes in the multifidus-
alterations in mechanotransduction have been shown
to mediate changes in muscle fiber composition [134–
136]. Specific exercise may result in more normal
mechanotransduction to the multifidus, triggering
molecular mechanisms and subsequent structural
improvements [136,137]. Evidence supports exercise
as a means to induce change in multifidus function
[122,138]; stabilization (multifidus specific) exercises
demonstrate a more favorable outcome when com-
pared to generalized lumbar ROM exercises and phy-
sician advice [139]. Exercises addressing the local
stabilizers would appear to be a logical treatment in
the treatment of degenerative instability.

7 Conclusions/recommendations

How do we assist patients with lower backache and
segmental instability secondary to disc degeneration?
We believe manual traction and oscillatory distraction
mobilizations, which can be applied in several different
fashions, can decompress pain-sensitive segments and
will not foster further segmental instability. It is our
contention that this traction-based manual interven-
tion should be performed with lumbar segments in
mid-position without the addition of side bending or
rotation. Pain science studies have consistently found
vibratory and oscillatory motion to be effective in
reducing pain [79,80,140], and we believe this applies
to lumbar discogenic pain as well. In addition, low-
load, supported, mid-position flexor and extensor mus-
cle (stabilization) training may be of benefit in terms of
enhancing dynamic/muscular-based segmental stabi-
lity [122,139,141,142].

Considering the frequency of discogenic degeneration
observed in the asymptomatic population, with rates ran-
ging from 52% at age 30 to 88% at age 60 [4], we believe
the resulting instability and increased rotational mobility
in affected lumbar segments may be underappreciated in
the clinical practice of spinal manual therapy. Historical
and contemporary spinal science has proven that early
grade disc degeneration is associated with segmental
instability. We believe that oscillatory traction-based man-
ual interventions applied in conjunction with stabilization
exercise, neuromuscular reeducation and other helpful
therapeutic advice is consistent with the ‘early physical
therapy interventions with known effectiveness’ that
AAOMPT suggests [1].

As the underlying problem is most likely an issue of
instability, rather than hypomobility, the use of manual
interventions which protect unstable motion segments,
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enhance disc rehydration [109,110,112,113] and nutrition
[115], facilitate neuromodulation [79,80], and reduce
muscular inhibition [143–145], followed by a thoughtful
exercise program, represents a treatment approach for
the patient with known discogenic degeneration that is
supported by the historical and contemporary science.
So, let’s not discard or ignore the imaging findings; rather
let’s apply them in context with the research. Let us
continue to be aware that most of our painful middle-
aged patients, andmany of our older spinal pain patients,
haven’t yet reached the stabilization phase of Kirkaldy-
Willis’s pathophysiological model and are, in fact, painful
due to discogenic hypermobility-instability. This may
then be, as Haldorsen asks us to consider in our treat-
ments of LBP, ‘the right treatment, to the right patient, and
the right time.’ [146] It is a point of view that is critical to all
who practice spinal manipulative therapy.

Key concepts:

(1) Use of the term disease should be avoided, but
discogenic degeneration and discogenic
instability have meaningful clinical implications.

(2) The basic science supports a combined biome-
chanical and physiologic cycle of degeneration,
driven by a combination of excessive mechan-
ical stresses and biochemically mediated tissue
breakdown.

(3) Rotational instability is an early, significant con-
sequence of discogenic degeneration.

(4) Forceful rotatory treatments may cause further
tissue damage, potentially leading to additional
loss of structural integrity of the disc.

(5) Based on the current science, mid-position trac-
tion techniques for hydration and neuromodu-
lation purposes, paired with multifidus-specific
stabilization exercises, may be the most appro-
priate OMPT interventions.
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